	2
	Thomas Erlebach1, Vanessa Kaabb2, and Rolf H. Möhring2

	Scheduling AND/OR-Networks on Identical Parallel Machines
	3

	

	Scheduling AND/OR-Networks on Identical Parallel Machines

	Thomas Erlebach1, Vanessa Kaabb2, and Rolf H. Möhring2

	1 ETH Z¨urich, Computer Engineering and Networks Laboratory (TIK) Gloriastrasse 35, 8092 Z¨urich, Switzerland erlebach@tik.ee.ethz.ch,

WWW home page: http://www.tik.ee.ethz.ch/~erlebach

2 Technische Universit¨at Berlin, Fakult¨at II, Institut f¨ur Mathematik, MA 6-1

Straße des 17. Juni 136, 10623 Berlin, Germany

{kaeaeb,moehring}@math.tu-berlin.de,

WWW home page: http://www.math.tu-berlin.de/coga

Abstract. Scheduling precedence constrained jobs on identical parallel mach- ines is a well investigated problem with many applications. AND/OR-networks constitute a useful generalization of standard precedence constraints where cer- tain jobs can be executed as soon as at least one of their direct predecessors is completed. For the problem of scheduling AND/OR-networks on parallel ma- chines, we present a 2-approximation algorithm for the objective of minimizing the makespan. The main idea of the algorithm is to transform the AND/OR constraints into standard constraints. For the objective of minimizing the total weighted completion time on one machine, scheduling AND/OR-networks is as hard to approximate as Label Cov ver. We show that list scheduling with shortest processing time rule is an O(n)-approximation for unit weights on one machine and an n-approximation for arbitrary weights.

1
Introduction

Scheduling
 precedence constrained jobs on identical parallel machines is a well investi- gated problem with many applications. A precedence constraint of the form (i, j) means that job j can be started only after the completion of job i. If there are several jobs i such that (i, j) is a precedence constraint, the job j can be started only after all of these jobs i are completed (AND-constraint). A natural and useful generalization of standard precedence constraints are AND/OR precedence constraints, represented by AND/OR- networks. In addition to standard constraints, they allow to specify that a node can begin execution as soon as at least one of its direct predecessors is completed (OR-constraint). AND/OR-networks arise in many applications, such as resource-constrained project scheduling [18] and assembly/disassembly sequencing [9]. In the latter application, a given product may have to be disassembled. Certain components can be removed only after the removal of other components, leading to standard AND-constraints. However, it might also be possible to remove a component from one of several geometric di- rections, assuming that other components blocking this direction have been removed beforehand. This case naturally leads to OR-constraints. Therefore, the different possibilities how to reach a component can be suitably modeled by AND/OR precedence constraints.

If a given set of jobs with AND/OR precedence constraints has to be executed on a bounded number of identical machines (e.g., assembly lines, workers, etc.), interesting optimization problems arise. Natural objectives are the makespan (the completion time of the job that nishes last), the total completion time (the sum of the completion times of all jobs), and the total weighted completion time (where the completion time of each job is multiplied with the weight of the job). While these problems have been studied intensively for standard precedence constraints, only little is known about scheduling AND/OR-networks on one or several machines.

Table 1. Spending on Active and Passive Labour Market Policies for Selected European Countries
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

1.1
Known Results

Scheduling with the makespan objective is trivial on one machine if the jobs are not restricted at all, but also if standard or AND/OR precedence constraints are imposed

among the jobs. The problem on identical parallel machines is NP-complete even with- out precedence constraints and with just two machines. Nevertheless, Graham’s list scheduling provides a simple 2-approximation for scheduling precedence constrained jobs on any number of parallel machines [10]. Gillies and Liu [7] present a 2-approximation for scheduling jobs of an acyclic AND/OR-network. Their algorithm rst transforms the AND/OR-network into a standard precedence graph and then applies Gra- ham’s list scheduling.

Minimizing the total weighted completion time is a non-trivial problem even on a single machine. If there are no precedence constraints among the jobs, it is well known that scheduling the jobs according to Smith’s rule [20] (in order of non- decreasing processing time over weight ratio) yields an optimal solution. For the total weighted completion time of standard precedence constrained jobs on one machine,

[image: image1.wmf]
Fig. 1. An AND/OR-network N on the left and a realization of N on the right side. AND-nodes are drawn as circles and OR-nodes as shaded squares

The jobs are subject to two different classes of constraints. On one hand, standard precedence constraints represented by a directed acyclic graph G=(V,E(G)) are given. An edge (i, j) ∈ E(G) represents the constraint that j has to wait for the completion of i. In a feasible realization of such a problem, all jobs have to be executed in accordance to the partial order induced by G. Each job j ∈ V has to wait for the completion of all its predecessors in the partial order and thus will also be called an AND-node. On the other hand, we allow for precedence relations of the form that a job j has to wait for the completion of only one predecessor. Those restrictions cannot be captured by the classical precedence constraints described above. The model of standard precedence constraints can be generalized by the introduction of a set W of waiting conditions. A waiting condition is an ordered pair w = (X, j), where X ⊆ V is a set of jobs and j ∈ V \ X is the waiting job. The waiting job j can be processed as soon as one of the jobs in X has been completed. The standard precedence constraints together with the waiting conditions can be represented by an AND/OR-network N =(V ∪W,E) in the following way: for every waiting condition w =(X, j) ∈ W , we introduce an OR-node, which we will denote by w again. For every x ∈ X, we introduce a directed edge (x,w). In addition, there is a directed edge (w, j) for the waiting job j. To model the required constraints correctly, we impose the rule that an OR-node w can be scheduled as soon as any of its predecessors x ∈ X is completed. An OR-node w ∈ W can be considered as a pure dummy node with processing time pw = 0 and weight ωw = 0. For convenience, we assume N to have a common start vertex, the source s, and a common end vertex, the sink t, with ps = pt = 0and ωs = ωt = 0. For an illustration, an AND/OR-network is depicted in the left part of Fig. 1, where node w3 represents the waiting condition

({5,6},7), for example.

In contrast to standard precedence constraints, an AND/OR-network may contain cycles and be feasible at the same time. Remember that the AND/OR-network N =(V ∪ W,E) contains the precedence digraph G as a subgraph. A realization of an AND/OR- network N is a partial order R =(V,<R) which is an extension of G,i.e. i <R j for each

(i, j) ∈ E with i, j ∈ V,and

for each w =(X, j) ∈ W, there exists x ∈ X with x <R j.

� Footnote example

