Analysis of Coordination between Developers and Users in The Apache Community

> <u>Yasutaka Kamei</u>, Shinsuke Matsumoto, Hirotaka Maeshima, Yoji Onishi, Masao Ohira, Ken-ichi Matsumoto

Nara Institute of Science and Technology Japan

- OSS development is geographically distributed software development in which developers around the world communicate with each other
- Analyzing communication among developers in OSS development communities would help us better understand distributed software development
 - How do developers coordinate with each other ?
 - How do developers collaborate with each other ?

Introduction -analysis of communications among developers-

- Many studies reported analysis of actual communications among developers in OSS communities
 - A developers communicating with many developers much contributed to source code changes^{*}

* C. Bird et al. Mining email social networks. In Proc. the 2006 International Workshop on Mining Software Repositories (MSR'06), pages 137–143, 2006.

Introduction -importance of user for OSS community-

- Raymond^{*} pointed out that users in an OSS community played an important role as codevelopers
 - A considerable use of software products by many users can lead to bug reports for the products and then the improvement of their quality

* E. S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary. O'Reilly and Associates, 1999.

Introduction -important role of collaboration-

We consider that the participants who belong to both developer and user groups have an important role of collaboration among developers and users in an OSS community

Goal and approach

Goal

- To obtain a better understanding on collaboration and coordination in OSS communities
- Approach
 - We analyze communication structures in OSS communities with a focus on participants who belong to both developer and user groups "bi-participants" and assist the collaboration between them

Analysis of bi-participants

- Visualizing the communication structure
- Calculating the betweenness centrality
- Reading contents of messages

Visualizing the communication structure

To understand the whole picture of the structure

 We define a communication structure as senderreceiver relationships in online media

Calculating the betweenness centrality

The betweenness centrality

It takes a value from 0 to 1, and a node with higher betweenness indicates the node which plays a role of a intermediator in the network.

Reading contents of messages

To confirm whether bi-participants coordinates activities between the both groups, or not.

Case Study

Target OSS project Apache HTTP Server It has been developing a web server software product with the biggest market share Target Communication data

- Developers mailing list
- Users mailing list
- Target Period

Data Cleaning

- We clean the data to identify the participants who have several email addresses before our analysis
 - 1. A sender of messages with the same email address and different "Name":
 - 2. A sender of messages with the same name at "From" and partially the same address before at mark(@):
 - 3. A sender of messages with the same name at "From" and different email addresses:

A sender of messages with the same email address and different "Name":

Message A

From: <u>Yasutaka Kamei</u> <yasuta-k@is.naist.jp> To: dev@httpd.apache.org Subject: test

---- Email Body ----

Message B

From: <u>Yasu</u> <yasuta-k@is.naist.jp> To: dev@httpd.apache.org Subject: test

---- Email Body ----

A sender of messages with the same name at "From" and the same address before at mark(@):

Message A

From: Yasutaka Kamei <yasuta-k@<u>is.naist.jp</u>> To: dev@httpd.apache.org Subject: test

---- Email Body ----

Message B

From: Yasutaka Kamei <yasuta-k@<u>gmail.com</u>>

We found 678 unique senders by applying the Step 1 and 2 to the data.

-- Email Douy -

Data Cleaning -Step 3.-

 We judged if they were used by the same person, by confirming the body of messages (e.g. messages with the same signature)

Message A

From: Yasutaka Kamei <<u>yasuta-k@is.naist.jp</u>> To: dev@httpd.apache.org Subject: test

Yasu

Message B

From: Yasutaka Kamei <<u>yasu@gmail.com</u>>

To: dev@httpd.apache.org

Only 5 of 678 senders match the Step 3.

Yasu

Result of analysis

- Visualizing the communication structure
- Calculating the betweenness centrality
- Reading contents of messages

Result of analysis -communication structure-

Result of analysis -betweenness centrality-

- The betweenness centrality of them is 10 times higher than the median, that means they intermediate between many developers and users
- P1 with the highest betweenness has extremely a larger number of degrees with users

	P1	P2	P3	P4	P5	median
Betweenness	0.179	0.044	0.043	0.022	0.019	0.001
Num. of emails	592	193	261	127	62	17
Num. of degrees with dev.	15	29	33	18	11	2
Num. of degrees with users	189	31	28	19	21	1

The statistics value of the top 5 bi-participants

Result of analysis -betweenness centrality-

- The top 5 bi-participants intermediate between more than half of users and developers
 - ♦ 55 of 112 nodes in the developers mailing-list
 - ♦ 249 of 540 nodes in the users mailing-list

Result of analysis -contents of messages-

- 5 experimenters checked the contents of messages which were posted by the top 5
 - If more than 3 experimenters judge that a message implied the coordination actions, we decided it as a message relates to the coordination actions

	P1	P2	P3	P4	P5
# of all e-mails	592	193	261	127	62
# of candidate coordination actions	15	5	23	4	22
# of coordination actions	8	1	10	3	14

The coordination actions of the top 5 bi-participants

Did they coordinate activities for only a limited period of time?

- It remains unclear whether the top 5 bi-participants supported the activities of developers and users for only the analysis period or not
 - Only the data for 45 days before and after the latest major version of Apache 2.2.0 released
- We analyze the transition of the betweenness centrality of the top 5 bi-participants
 - November 2001 September 2006

Change in the ranking of the top 5 bi-participants

- The betweenness centrality of P1 was the highest for the whole period.
- That of P2, P3 and P4 was high for the long period.

21 / 23

Discussion -change in the ranking of the top 5-

- Coordinators with consistently higher betweenness such as P1, P2... would continue coordinating activities between developers and users
- One of the success factors is the existence of biparticipants who facilitate and coordinate activities among the members
 - In the Linux community, Linus Torvalds, coordinator of the Linux Kernel community, has been contributing to its development since its start in 1991

Summary of this study

- The communication structure among developers and users, using two mailing-lists of developers and users in the Apache community
 - Participants with high betweenness coordinated activities between developers and users
 - Some of the participants would have been playing a role of a coordinator in the community for a long term

Thank you for listening

- It takes a value from 0 to 1, and a node with higher betweenness indicates the node which plays a role of a intermediator in the network.
 - The betweenness centrality measure is proposed by Freeman.

$$C_{betweenness}(v_i) = \frac{\sum_{j < k}^{n} \sum_{j < k}^{n} p_{jk}(v_i)}{\sum_{j < k}^{n} \sum_{j < k}^{n} p_{jk}}$$

Why did we use the betweenness centrality?

We analyze the participants which play a role of a intermediator in the network

Communication structure in online media

- We define a communication structure as senderreceiver relationships in online media
 - e.g., if participants B and C replay to a message sent by participant A, edges are linked from nodes B and C to node A

Contents of messages -Information transfer-

If bi-participants transferred information to a developer group that only users had, we considered such action of bi-participants coordination.

Information transfer: users --> developers

sender	dialog	notes
developer	Some versions do not seem very	The developer is suggesting in the developer
	popular.	group that some versions of Apache should
		be stopped from being made public because
		they are not popular.
$P3_{d \cap u}$	Since I have personally received emails from users regarding	$P3_{d \cap u}$ is telling the developers that the versions mentioned by the developers are
	their versions, I think the	still popular. He is motivating the developers
	versions are still popular.	to continue Apache development by
		describing its popularity among users.

Contents of messages -Request for participation-

If bi-participants took a kind of coordinative action, which was a request for participation, we considered such action of bi-participants coordination.

Request for participation: developers --> users

sender	dialog	Notes
$P3_{d \cap u}$	It is short of testers for some	Due to the shortage of testers for some
	minor OS. We need your	versions of Apache compiled for some minor
	contributions as testers.	OS, $P3_{d \cap u}$ asks the user group to participate
		in the tester group. Such coordination would
		contribute to the development by reducing
		the burden of developers.

単 媒介中心性の高い参加者にコーディネーションの 形跡が見られたからと言って、コミュニティにお けるコーディネーションの構造が把握できるとは 言えない

■ MLで,送受信関係ってwww

- ◆ ちゃんと送受信関係になってますのん?
- ◆ ほかの人も見れているのとちゃいますのん?