
The SQO-OSS quality model: 
measurement-based open 
source software evaluation

Ioannis Samoladas, George Gousios, 
Diomidis Spinellis, Ioannis Stamelos

Aristotle University of Thessaloniki, Greece
Athens University of Economics and Business, Greece

This work was partially supported by the European Community's
Sixth Framework Programme under the contract IST-2005-033331

Software Quality Observatory for Open Source Software



Introduction

• Software evaluation is a critical task for software 
professionals:
o Decide which software is suitable for their needs
o Decide when to deploy a new software product (when it is 

mature enough to release?)
 
 
• Advent of FLOSS rendered current models not applicable to 

some extend
o They cannot be tuned in a FLOSS environment 



Introduction

• Here we present SQO - OSS, a measurement based 
framework for FLOSS evaluation:
o support for automated evaluation
o metric oriented variables, with minimal human intervation
o evaluates both community and code
o weights and criteria can be tuned by evaluator, while a 

set of  predefined profiles is available
 
• Rest of the presentation:

o related work
o model definition and evaluation process
o example
o the Alitheia system



Models in software evaluation
• There are many models in software evaluation, which 

usually are hierarchical
o they decompose quality into an hierarchy (tree) of criteria 

and attributes (branches) which eventually lead to metrics 
(leaves)

• Examples: McCall, Boehm, ISO/IEC 9126 or ISO 2500:2005
• These models are not suitable for FLOSS evaluation:

o open access to source code
o peer review
o asynchronous global development

• The need for FLOSS specific models was soon identified but 
these models are:
o purpose specific
o require substantial human intervention



OSMM

• Open Source Maturity Model assumes that FLOSS quality is 
proportional to its maturity

• Maturity is decomposed into six criteria:
o Software, Support, Documentation, Training, Integration, 

Professional Services 
 
• The evaluation is done through weight sum of the scores of 

the above criteria
 
• OSMM does not take into account important aspects of 

FLOSS such as the code itself 



OpenBRR

• Open Business Readiness defines a model and a process 
for evaluating FLOSS

• Assessment is done in four phases:
• Quick assessment filter
• Target usage assessment
• Data collection and Processing
• Data translation

• The assessment process is organized into twelve 
categories, such as Functionality, Usability, Quality, 
Community, Adoption and Support

• Again result is achieved with weighted aggregation
• The problem with OpenBRR is that it requires effort from 

evaluator, who also assigns the marks in scores



QSOS

• Qualification and Selection of Open Source Software model 
has four iterative phases
• Definition of the elements to be used by the next three 

steps
• Evaluation of the software by collecting information from 

the community and building an identity card and an 
evaluation sheet

• Qualification which involves the specifications and needs 
in order to select an open source software

• Selection of the software that fulfills user's requirements
• The whole process is not too flexible and difficult to handle



Why SQO - OSS model?

• was built with focus on automation
 
• is the core of a continuous quality monitoring system

 
• does not evaluate functionality - functionality requires 

evaluator to play an important role in the process
 
• focuses on source code

 
• also considers community

 
• allows for user intervention



Model construction

There were two phases:
 
• Phase one: Definition of the evaluation model

• Definition of the model criteria
• Definition of the metrics

 
• Phase two: Definition of the aggregation method 

• Definition of the evaluation categories
• Definition of the profiles of those categories

 
We tried to focus only on attributes that can be measured with 
minimal human intervention (automation) 



Model definition

• We assumed that FLOSS quality depends on two critical 
factors: Code and Community

• In order to measure those factors and construct the model 
we used a simplified version of the Goal - Question - Metric 
(GQM) approach

• Two ultimate goals where:
o analyze the source code of an open source project
o analyze the community of an open source project  



Model definition

For these goals we formulated questions iteratively:
     "How is source code quality measured?" 
 
Then by answering the questions we formulated new ones:
    "How is maintainability, reliability and security measured?"
 
And for maintainability we followed the ISO/IEC 9126 
approach:
    "How is analyzability, changeability, stability and testability 
measured?"
We kept on formulated questions until we reached a level 
where attributes could be measured directly (metrics)
 
We chose  only wide acceptable metrics and metrics suitable 
for automation



Model definition

• After initial construction, the SQO - OSS consortium 
partners (both FLOSS developers and academia) offered 
their comments and suggestions for further improvement

• Wiki technology allowed us for model review

• Our system allows partial evaluation (e.g. only Testability) 
thus we have used the same metrics in more than one 
category



Model hierarchy



Model metrics

 



Evaluation process

• In order to have a result we have to combine all metrics

• For this we have used profile based evaluation, instead of a 
weighted average sum method such as Analytical Hierarchy 
Process

• The reason for doing so was that we wanted ordinal scale 
measures instead of interval scales that WAS uses

• We wanted results in the form of excellent, good, fair and 
poor - These are also our four evaluation categories (for 
now on E, G, F and P)



Evaluation process

• Our method, for four categories, requires the definition of 
three quality profiles - E, G, and F

• These profiles represent the least measurement values 
required for each category and they are defined seperately 
for each composed criterion of the model

• Thus, in order to characterize the product quality of a 
product as E, Maintainability, Reliability and Security must 
be also characterized as E.
o When it comes for the metrics there are profiles with 

specific threshold values - these thresholds come from 
existing peer reviewed literature

• Users of the model can modify the profiles according to their 
needs - also they can alter the weights, although this is not 
recommended 



Profile example



Aggregation process

• The aggregation process is done with the use of specific 
outranking relations iteratively with all the given profiles - 
they express our decision of comparing the artifact with the 
profiles

• An artifact x is considered to be at least as good as the y 
profile if and only if the “weighted” majority of the criteria 
agree so - there are specific tests which represent the 
strength to be reached in order to come to such decision

• There is another kind of assignment, which identifies the 
profile which is surely worse than x and assigns x to the 
previous one (for example if x is strictly worse than E then it 
is assigned to G) but this is not taken into account 



Evaluation example



The SQO-OSS platform

 



The model as SQO-OSS plugin

• Combination of:
o Plug-in to precalculate data per project on each revision
o (Web) UI component to apply weights

• Core Plug-in
o Use other plug-ins to retrieve low-level metrics
o Store results of measurements per version

• Use the project's ~700 fully mirrored project infrastructure to 
calibrate parameters

• Will be available from demo.sqo-oss.org soon



Conclusions - Future work

• We presented a new FLOSS quality evaluation model which 
focuses on automation and it is used in a real system

• Profile based evaluation, allows better selection decisions
 
Future work includes:
• Immediate empirical validation of the model
• Calibration of the profiles

 

THANK YOU FOR YOUR ATTENTION 
QUESTIONS AND REMARKS ARE HIGHLY WELCOMED

Ioannis Samoladas: ioansam@csd.auth.gr


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

