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Introduction

• Software evaluation is a critical task for software 
professionals:
o Decide which software is suitable for their needs
o Decide when to deploy a new software product (when it is 

mature enough to release?)
 
 
• Advent of FLOSS rendered current models not applicable to 

some extend
o They cannot be tuned in a FLOSS environment 



Introduction

• Here we present SQO - OSS, a measurement based 
framework for FLOSS evaluation:
o support for automated evaluation
o metric oriented variables, with minimal human intervation
o evaluates both community and code
o weights and criteria can be tuned by evaluator, while a 

set of  predefined profiles is available
 
• Rest of the presentation:

o related work
o model definition and evaluation process
o example
o the Alitheia system



Models in software evaluation
• There are many models in software evaluation, which 

usually are hierarchical
o they decompose quality into an hierarchy (tree) of criteria 

and attributes (branches) which eventually lead to metrics 
(leaves)

• Examples: McCall, Boehm, ISO/IEC 9126 or ISO 2500:2005
• These models are not suitable for FLOSS evaluation:

o open access to source code
o peer review
o asynchronous global development

• The need for FLOSS specific models was soon identified but 
these models are:
o purpose specific
o require substantial human intervention



OSMM

• Open Source Maturity Model assumes that FLOSS quality is 
proportional to its maturity

• Maturity is decomposed into six criteria:
o Software, Support, Documentation, Training, Integration, 

Professional Services 
 
• The evaluation is done through weight sum of the scores of 

the above criteria
 
• OSMM does not take into account important aspects of 

FLOSS such as the code itself 



OpenBRR

• Open Business Readiness defines a model and a process 
for evaluating FLOSS

• Assessment is done in four phases:
• Quick assessment filter
• Target usage assessment
• Data collection and Processing
• Data translation

• The assessment process is organized into twelve 
categories, such as Functionality, Usability, Quality, 
Community, Adoption and Support

• Again result is achieved with weighted aggregation
• The problem with OpenBRR is that it requires effort from 

evaluator, who also assigns the marks in scores



QSOS

• Qualification and Selection of Open Source Software model 
has four iterative phases
• Definition of the elements to be used by the next three 

steps
• Evaluation of the software by collecting information from 

the community and building an identity card and an 
evaluation sheet

• Qualification which involves the specifications and needs 
in order to select an open source software

• Selection of the software that fulfills user's requirements
• The whole process is not too flexible and difficult to handle



Why SQO - OSS model?

• was built with focus on automation
 
• is the core of a continuous quality monitoring system

 
• does not evaluate functionality - functionality requires 

evaluator to play an important role in the process
 
• focuses on source code

 
• also considers community

 
• allows for user intervention



Model construction

There were two phases:
 
• Phase one: Definition of the evaluation model

• Definition of the model criteria
• Definition of the metrics

 
• Phase two: Definition of the aggregation method 

• Definition of the evaluation categories
• Definition of the profiles of those categories

 
We tried to focus only on attributes that can be measured with 
minimal human intervention (automation) 



Model definition

• We assumed that FLOSS quality depends on two critical 
factors: Code and Community

• In order to measure those factors and construct the model 
we used a simplified version of the Goal - Question - Metric 
(GQM) approach

• Two ultimate goals where:
o analyze the source code of an open source project
o analyze the community of an open source project  



Model definition

For these goals we formulated questions iteratively:
     "How is source code quality measured?" 
 
Then by answering the questions we formulated new ones:
    "How is maintainability, reliability and security measured?"
 
And for maintainability we followed the ISO/IEC 9126 
approach:
    "How is analyzability, changeability, stability and testability 
measured?"
We kept on formulated questions until we reached a level 
where attributes could be measured directly (metrics)
 
We chose  only wide acceptable metrics and metrics suitable 
for automation



Model definition

• After initial construction, the SQO - OSS consortium 
partners (both FLOSS developers and academia) offered 
their comments and suggestions for further improvement

• Wiki technology allowed us for model review

• Our system allows partial evaluation (e.g. only Testability) 
thus we have used the same metrics in more than one 
category



Model hierarchy



Model metrics

 



Evaluation process

• In order to have a result we have to combine all metrics

• For this we have used profile based evaluation, instead of a 
weighted average sum method such as Analytical Hierarchy 
Process

• The reason for doing so was that we wanted ordinal scale 
measures instead of interval scales that WAS uses

• We wanted results in the form of excellent, good, fair and 
poor - These are also our four evaluation categories (for 
now on E, G, F and P)



Evaluation process

• Our method, for four categories, requires the definition of 
three quality profiles - E, G, and F

• These profiles represent the least measurement values 
required for each category and they are defined seperately 
for each composed criterion of the model

• Thus, in order to characterize the product quality of a 
product as E, Maintainability, Reliability and Security must 
be also characterized as E.
o When it comes for the metrics there are profiles with 

specific threshold values - these thresholds come from 
existing peer reviewed literature

• Users of the model can modify the profiles according to their 
needs - also they can alter the weights, although this is not 
recommended 



Profile example



Aggregation process

• The aggregation process is done with the use of specific 
outranking relations iteratively with all the given profiles - 
they express our decision of comparing the artifact with the 
profiles

• An artifact x is considered to be at least as good as the y 
profile if and only if the “weighted” majority of the criteria 
agree so - there are specific tests which represent the 
strength to be reached in order to come to such decision

• There is another kind of assignment, which identifies the 
profile which is surely worse than x and assigns x to the 
previous one (for example if x is strictly worse than E then it 
is assigned to G) but this is not taken into account 



Evaluation example



The SQO-OSS platform

 



The model as SQO-OSS plugin

• Combination of:
o Plug-in to precalculate data per project on each revision
o (Web) UI component to apply weights

• Core Plug-in
o Use other plug-ins to retrieve low-level metrics
o Store results of measurements per version

• Use the project's ~700 fully mirrored project infrastructure to 
calibrate parameters

• Will be available from demo.sqo-oss.org soon



Conclusions - Future work

• We presented a new FLOSS quality evaluation model which 
focuses on automation and it is used in a real system

• Profile based evaluation, allows better selection decisions
 
Future work includes:
• Immediate empirical validation of the model
• Calibration of the profiles

 

THANK YOU FOR YOUR ATTENTION 
QUESTIONS AND REMARKS ARE HIGHLY WELCOMED

Ioannis Samoladas: ioansam@csd.auth.gr
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