

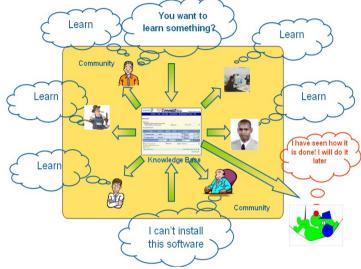
Reflection on Knowledge Sharing in F/OSS Projects

Sulayman K. Sowe & Ioannis Stamelos sksowe@csd.auth.gr

Dept. of Informatics, Aristotle University, Thessaloniki

International conference on Open Source Systems, September 7th -11th , 2008, Milan.

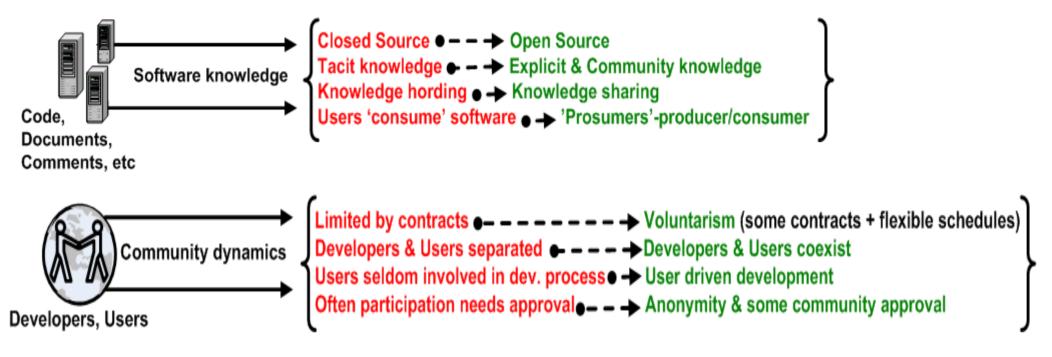
• Theme 1: Knowledge sharing in distributed software development


- Knowledge sharing: personal view
- Importance of knowledge sharing for F/OSS projects
- Some knowledge sharing problems
- Theme 2: Knowledge Sharing enablers in F/OSS projects
 - Availability of software code/knowledge
 - Community dynamics
- Theme 3: Paradigm Shift in knowledge management practices
 - Knowledge sharing in closed-source environments
 - Knowledge sharing in open-source projects
- Theme 4: An empirical study
 - Findings & Implications
- Theme 5: Reflection on knowledge sharing practices

T1: Knowledge sharing in distributed software development Oser September 7-10 2008

- Knowledge sharing:
 - A synergistic process where project participants establish knowledge links (k) by "talking to each other", and in the process get more than they put in:

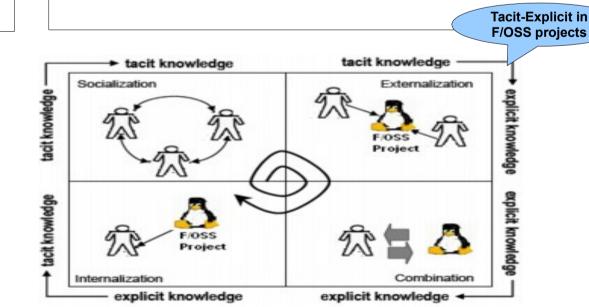
 \mathbf{k}_{AB} = 1 if there is knowledge sharing between actors **A** and **B**, and 0 if otherwise.


- Importance of knowledge sharing for F/OSS projects:
 - Produce goods (software) and services (support).
 - Develop, enhance and refine project strategies.
 - Enable individual and project learning.
 - Build trust and confidence amongst participants.
- Some knowledge sharing problems:
 - How can projects leverage and transform the tacit knowledge of community members into explicit usable knowledge?
 - How to coordinate individuals or even infrastructures which are often located at large distances from each other?
 - How to achieve f2f knowledge sharing? Sprints, conferences, etc.?
 - How to provide easy to use tools for light-weight knowledge sharing?
 - How to accommodate viewpoints of a diverse group?

T2: Knowledge sharing enablers in F/OSS projects

• Tools (forums, mailing lists, SVN, etc.) to facilitate communication and coordination.

- But
 - Is there knowledge sharing?
 - Who are the people involved?
 - How much knowledge sharing are developers and users doing?
 - What is being talked about?
 - How will those 'excluded' from talking feel?


T3: Paradigm shift in KM practices

- The goal: lower barriers imposed by organizational structures (virtual or physical) so that the generation, acquisition, transfer, and sharing of knowledge can be facilitated.
- Closed-source systems:
 - Source of knowledge (code) is guarded secret.
 - Knowledge can be traded and sold.
 - New staff learn from documented practices of old staff. But how much have they documented?
 - Strict schedules and deadlines may not be conducive for effective knowledge sharing.
 - Employees leave and "take" their knowledge along with them.

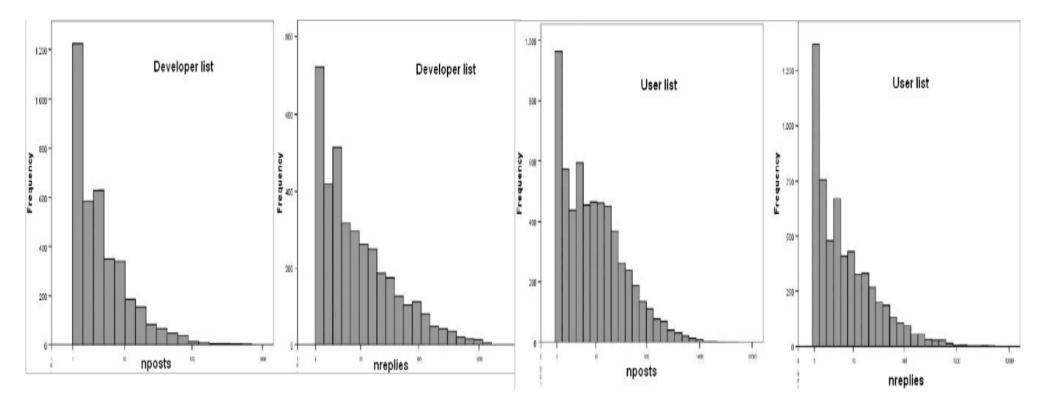
• Interactive F/OSS systems:

- Source of knowledge (code) is open to all for scrutiny
- Share knowledge; selling difficult because someone might provide the same knowledge for free.
- Newbies learn from experts, archives and documented practices and know how
- Learn, use, and share whenever and wherever you want.
- From Tacit to Explicit knowledge: volunteers externalize their knowledge in forums, doc., CVS/SVN for future participants to lean from.

T4: An Empirical Investigation....1

- Research venues; studying knowledge sharing in F/OSS projects:
 - Source (control) code management systems (CVS/SVN)
 - Count developers who made commits to the same module in a project
 - Projects documentation
 - Count individuals who collaborated in writing/editing a document, website, etc.
 - Mailing lists
 - Total number of emails posted to a list (*nposts*)
 - Total number of replies made to questions posted to the lists (*nreplies*)
 - Our data set:- Debian developer and users mailing lists (01/01/00-31/12/05)
 - Developer list: N = 3735 participants; *nposts*= 29685; *nreplies*= 128933.
 - User lists: N = 5970 participants; *nposts*= 193276; *nreplies*= 165380.

		Developer	User	
	Mean	7.95	32.37	
nposts	Median	3.00	7.00	
	Std. Dev.	21.302	121.753	
	Maximum	523	4106	
	Mean	34.52	27.70	
nreplies	Median	6.00	5.00	
	Std. Dev.	105.57	122.04	
	Maximum	1517	4168	


Observation:

- Posting and replying activities skewed.
- Posting and replying activities different for different lists
- Mean (posts/person) and median of *nposts* are smaller for the Developer list, while the same measures have larger values for *nreplies*.

Theme 4: An Empirical Investigation....**2**

- Developer list participants: small number of posts and a large number of replies.
- User list participants: small posts and small replies.

• Relationship: posting and replying activities are highly related, corr higher for User list.

		Developer List		User List		
Test	Variable		nposts	nreplies	nposts	nreplies
Kandella's taub	nposts	Corr. Coef.	1000	,475*	1000	,550*
	nreplies	Corr. Coef.	,475*	1000	,550*	1000
Spearmans <i>rho</i>	nposts	Corr. Coef.	1000	,608*	1000	,699*
	nreplies	Corr. Coef.	,608*	1000	,699*	1000

Theme 5: Reflection on knowledge sharing practices

- In the Developer list participants contributed more replies:
 - messages contain sufficient information, given the highest priority, receive the attention of almost all participants.
- User list participants posted more than they replied to questions asked in the lists:
 - Too much 'noise', novice and some uninteresting messages, important requests may be lost or not spotted early
- Star posters are also star repliers:
 - Knows project and software,
 - longtime project associates.
 - But this may have Implications for information overload, and
 - valuable coding time may be lost
- Crests and troughs (Wave) effects
 - When posts increase, replies increase correspondingly

•What needs to be done:

- More qualitative studies to study software developers and users online and offline
- Are developers coding as much as they are 'talking' in lists? See WoPDaSD workshop paper

Thanks a lot for your attention Questions & Comments